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Abstract

In active vibration control, model accuracy of a vibration field is crucial to the stability and performance
of closed-loop systems, especially multiple-input–multiple-output feedback control systems. A state-space
model is popular for the design of vibration controllers. Its accuracy may be affected by mode truncation,
errors in eigenfunctions for a modal model or errors in mass/stiffness coefficients of finite elements for a
finite element model. There are few analytical results on controller stability margins with respect to these
errors. This paper proposes a controller based on transfer matrices identified from the measurement data,
on the ground that the accuracy of transfer matrices is manageable by identification algorithms. The
proposed controller is able to introduce active damping to vibration fields. An analytical link is available
between the stability margin and identification errors for the proposed controller. These are important
features analyzed theoretically and verified numerically and experimentally here.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Feedback control is an important vibration control strategy. Many feedback vibration
controllers are based on modal state feedback [1–4]. These schemes require accurate modal
parameters such as eigenfunctions to design the controllers and obtain online modal feedback.
The accuracy of eigenfunctions affects not only parameters of the controller but also the feedback
state vector with which the actuation signal is synthesized.
A practical problem with modal controllers is the availability of eigenfunctions for vibration

fields with irregular shapes or uncertain boundary conditions. In many applications, eigenfunc-
tions are not available analytically and must be estimated with inevitable errors. For structures
mounted with piezoelectric patches, the existence of eigenfunctions could be a problem [5]. This
reason prompts the use of physical state feedback with multiple spring–mass [6,7] or finite element
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models [8–11] to avoid the eignfunctions. The physical state-space controllers still depend on
accurate parameters such as mass/stiffness coefficients of finite elements. As common sense, a
control engineer should not expect a model to match a real system exactly since it contains errors
and uncertainties that affect the closed loop via a feedback controller. A problem with available
vibration controllers is how to relate the stability margins analytically to inevitable errors in
eigenfunctions or errors in mass/stiffness coefficients of finite elements.
An alternative model of a vibration field is the transfer function model (TFM) that represents

paths from actuators to sensors in a vibration field. There are many mature algorithms for
identification of transfer functions. The accuracy of these algorithms is sufficient to guarantee
stable closed-loop systems in many applications [12]. For vibration control, an analytical link will
be shown between the stability margin and identification errors for controllers based on TFMs.
Such an analytical link fits the controller design problem into the framework of robust control
theory. It is therefore natural for one to examine the possibility of designing vibration controllers
based on TFMs identified from vibration fields.
The equivalence between TFM and other models prompts the proposal of a robust pole-

placement controller on basis of the TFM. The controller will damp the entire vibration field, a
feature to be analyzed theoretically and verified numerically and experimentally in this study. In
view of model similarity between vibration and noise fields, the new method is also applicable to
multiple-input–multiple-output (MIMO) active damping of enclosed noise fields.
Since a TFM is identified from actuation and sensor signals, it includes actuator and sensor

dynamics. This study will analyze the differences between the TFM and the truncated state-space
models with respect to actuator and sensor dynamics. It will be shown that a TFM provides a
reasonably accurate and realistic way to establish closed-loop stability of a control system by
taking actuator and sensor dynamics into analytical account. Details of theoretical analysis and
numerical verification are presented in the following sections.

2. Mathematical model

The dynamics of a vibration or noise field, subject to the excitation of ka actuators, can be
described by a general second order equation

ðMs2 þ Ds þ KÞx ¼ Bf þ d or AðsÞx ¼ Bf þ d; ð1aÞ

where M, D, KARm�m are the mass, viscosity damping, and stiffness matrices; xARm is the state
vector; BARm�ka represents the actuator location matrix; dARm the disturbance vector and f ARka

the actuation force vector. The feedback signals are measured by ks sensors such that

y ¼ Cx; ð1bÞ

where CARks�m is the sensor location matrix. The feed-through matrix is absent because its
inclusion only increases the complexity of derivations without affecting the analytical results of
this study.
The equation is expressed in the Laplace transform domain. It may be derived by different

approaches, such as the finite element method, multiple spring–mass modelling, Rayleigh–Ritz
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approximation or modal analysis with a proper truncation. Parameters of Eqs. (1a) and (1b) are
assumed not available.

2.1. Mode truncation and actuator/sensor dynamics

For a modal state-space model, the transfer function from actuator location xa to sensor
location xs is given by

H�
asðsÞ ¼

XN
i¼1

fiðxsÞfiðxaÞ
s2 þ 2xiois þ o2i

;

where xi is the damping ratio, oi the resonant frequency and fiðxÞ the eigenfunction of the ith
vibration mode. The truncated version of this transfer function may be derived from Eq. (1a) as

HasðsÞ ¼
Xm

i¼1

fiðxsÞfiðxaÞ
s2 þ 2xiois þ o2i

¼ csA
�1ðsÞba: ð2aÞ

This approach is customarily adopted by many researchers in vibration research [1,3], where cs is a
row of matrix C and ba is a column of matrix B, with fiðxsÞ and fiðxaÞ as the respective elements.
The least-square modal filter x ¼ ½CTC 	�1CTy is a popular tool to recover x from y. Since rank
(C) is at most minfm; ksg; x ¼ ½CTC 	�1CTy is solvable only if mpks: The feedback vector x may
be contaminated by parameter errors in C. Other state-space controllers use y as the physical state
vector [6–8], which means y ¼ x and m ¼ ks:
For the TFM approach, on the other hand, the same transfer function is given by

T�
asðsÞ ¼

XN
i¼1

fiðxaÞfiðxsÞ
s2 þ 2xiois þ o2i

" #
FaðsÞFsðsÞ;

where FaðsÞ and FsðsÞ denote the actuator and sensor dynamics, respectively. The truncated TFM
is given by

TasðsÞ ¼
Xm

i¼1

fiðxaÞfiðxsÞ
s2 þ 2xiois þ o2i

" #
FaðsÞFsðsÞ; ð2bÞ

where m is determined by the bandwidth of FaðsÞ and FsðsÞ but independent of ks: The difference
between a modal state-space model and a TFM, with respect to mode truncation and actuator/
sensor dynamics, is clear by comparing Eqs. (2a) and (2b). Obviously, Eq. (2b) is not a
straightforward solution of Eq. (1a) as Eq. (2a).
Consider, for example, a simplified case with a first order actuator/sensor dynamics FaðsÞFsðsÞ ¼

1=s þ s: Its substitution into Eq. (2b) leads to a partial fraction expansion

TasðsÞ ¼
ks

s þ s
�

Xm

i¼1

fiðxaÞfiðxsÞ
o2i þ s2 � 2xiois

s þ 2xioi � s
s2 þ 2xiois þ o2i

; ð2cÞ

where

ks ¼
Xm

i¼1

fiðxaÞfiðxsÞ
o2i þ s2 � 2xiois

:
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TasðsÞ is more accurate than HasðsÞ since FaðsÞ and FsðsÞ cause phase and magnitude distortions to
all modes, as shown in Eq. (2c). The inclusion of FaðsÞ and FsðsÞ implies an analytical impact of
actuator/sensor dynamics to a state-space model in terms of elements of AðsÞ; B and C. Such an
analytical treatment has not been seen in the stability analysis of vibration controllers based on
state-space models.

2.2. Identification of transfer functions

In practice, eigenfunctions and actuator/sensor dynamic models may not be available
accurately. It is always possible to identify these models from experimental data. Almost all
identification results are based on input excitations and output measurements that inevitably
involve actuators and sensors. A control system generates a signal ut and feeds it to an actuator to
excite the vibration field. A vibration signal yt is measured and sampled into a computer as vt after
filtered by an anti-alias filter.
The signal sequences ut and vt may be used to identify a discrete-time single-input–single-output

(SISO) transfer function TasðzÞ ¼ nðzÞ=dðzÞ with actuator/sensor dynamics hidden in dðzÞ ¼
z2m þ

P2M
I¼1 diz

2m�i and nðzÞ ¼
P2m

i¼1 niz
2m�i: Parameters of dðzÞ and nðzÞ are identified via an

autoregressive moving-average (ARMA) expression

vt þ #d1vt�1 þ?þ #d2mvt�2m � #n1ut�1 �?� #n2mut�2m ¼ et; ð3Þ

where et is the residual error.
Alternatively, one may apply the above process to identify the actuator/sensor transfer

functions and plant transfer functions separately and include the actuator/sensor dynamics in the
controller model. Practically, it is more convenient to identify a single transfer function TasðzÞ that
includes all unknown dynamic effects. Since ut has to pass an actuator before it can excite the
vibration field and a vibration signal is available as a sensor signal vt; it is actually difficult and
unnecessary to separate the actuator/sensor dynamics explicitly from TasðzÞ:
The identification errors are analytically described by DdðzÞ ¼ dðzÞ � #dðzÞ and DnðzÞ ¼ nðzÞ �

#nðzÞ in the form of DdðzÞvt � DnðzÞut ¼ et [12]. Many identification algorithms are analyzed in Ref.
[12] that drive et to zero. If ut is persistently exciting the vibration field, then ||DdðzÞ|| and ||DnðzÞ||
converge to zero as well. In practice, due to mode truncation, the algorithms described in Ref. [12]
will drive |et|, ||DdðzÞ||, and ||DnðzÞ|| to be smaller or equal to prescribed bounds under persistent
excitation.
For MIMO application, a transfer matrix is a combination of scalar transfer functions. Each of

them can be identified with an estimation error bounded by small bounds. Solving y from
Eqs. (1a) and (1b), one obtains y ¼ CA�1ðsÞðBf þ dÞ: The actuation forces are generated by
actuator filters f ¼ FaðsÞu where u is the control signal and FaðsÞ is a diagonal transfer matrix. The
vibration signals are measured by sensor filters as v ¼ FsðsÞy where v is available to the controller
and subject to the distortion of diagonal filter transfer matrix FsðsÞ: This implies

v ¼ LðsÞA�1ðsÞHðsÞu þ g ¼ TðsÞu þ g; ð4Þ

where TðsÞ ¼ LðsÞA�1ðsÞHðsÞ is a MIMO transfer matrix;

HðsÞ ¼ BFaðsÞ; LðsÞ ¼ FsðsÞC and g ¼ LðsÞA�1ðsÞd: ð5Þ
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The discrete-time version of TðsÞ is denoted by TðzÞ: In the next subsection, the continuous-time
model TðsÞ serves as the basis to show active damping effects of the proposed controller.
Thereafter, the discrete-time model TðzÞ will be the basis of design and stability analysis for the
proposed vibration controller.

2.3. Active damping by the proposed controller

There are two objectives for vibration control. One is the creation of local quiet zones by
minimizing sensed signals; the other is active damping by modifying closed-loop eigenvalues. A
controller designed for one objective is not necessarily suitable for the other. Since a TFM
includes more modes than sensors (m > ks) and these modes are subject to the distortion of
actuator/sensor filters, sensor signals v contain partial and distorted information about x.
Minimization of v does not necessarily minimize x. The pole-placement controller GðsÞ is more
suitable for active damping. A substitution of u ¼ �GðsÞv into Eq. (4) leads to

v ¼ ½I þ TðsÞGðsÞ	�1g ¼ ½I þ LðsÞA�1ðsÞHðsÞGðsÞ	�1g; ð6Þ

for the TFM closed loop.
In view of actuator/sensor dynamics, one should substitute f ¼ �FaðsÞGðsÞLðsÞx in Eq. (1a) to

derive the closed-loop solution for the state vector x as

x ¼ ½AðsÞ þ HðsÞGðsÞLðsÞ	�1d: ð7Þ

By some routine calculations, it is not difficult to verify the following identity:

½I þ LðsÞA�1ðsÞHðsÞGðsÞ	fI � LðsÞ½AðsÞ þ HðsÞGðsÞLðsÞ	�1HðsÞGðsÞg ¼ I : ð8Þ

It becomes clear that Eq. (6) is equivalent to

v ¼ fI � LðsÞ½AðsÞ þ HðsÞGðsÞLðsÞ	�1HðsÞGðsÞgg; ð9Þ

which involves the same inverse of AðsÞ þ HðsÞGðsÞLðsÞ as Eq. (7). Therefore, closed-loop poles of
Eq. (6) are also closed-loop poles of Eq. (7). The objective of active damping is based on such
equivalence.
In practice, a controller may be based on a discrete-time transfer matrix expressed as TðzÞ ¼

D�1
l ðzÞN lðzÞ ¼ N rðzÞD�1

r ðzÞ where D�1
l ðzÞN lðzÞ and N rðzÞD�1

r ðzÞ are, respectively, the left and right
matrix fraction descriptions (MFDs) [13]. The left MFD has an ARMA expression DlðzÞvt �
N lðzÞut ¼ et and is identifiable by any algorithm described in Ref. [12]. Similar to the SISO
example of Eq. (3), identification errors of TðzÞ are denoted as DDlðzÞ ¼ DlðzÞ � #DlðzÞ and
DN lðzÞ ¼ N lðzÞ � #NlðzÞ; respectively. Convergence of ||DDlðzÞ||N and ||DN lðzÞ||N to be smaller
than or equal to prescribed small bounds are possible under persistent excitation [12]. If the
magnitude of disturbance is bounded by a small value, then an adaptive pole-placement controller
is available in Ref. [13] with guaranteed closed-loop stability when the controller is based on an
online TFM. In vibrations systems, disturbance d may exceed the tolerances of adaptive
controllers. It is easier to obtain offline estimates #DlðzÞACks�ks and #NlðzÞACka�ks with reasonably
small errors ||DDlðzÞ||Npddl and ||DN lðzÞ||Npdnl by shutting off d. The right MFD of TðzÞ can
be obtained from its left MFD as #DrðzÞACka�ka and #NrðzÞACka�ks with small errors
||DDrðzÞ||Npddr and ||DN rðzÞ||Npdnr: These are the analytical design basis for the proposed
controller.
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3. Controller design and analysis

In the previous section, the closed-loop eigenvalues of the state-space model Eq. (1a) are shown
equivalent to the eigenvalues of I þ TðsÞGðsÞ: The focus of this section is to design a digital
controller GðzÞ such that roots of det½I þ TðzÞGðzÞ	 ¼ 0 be placed in prescribed locations in the
complex plane.

3.1. Controller structure

There are generally two types of pole-placement controllers. A static one requires full state
feedback to place all poles, though it is able to place partial poles with output feedback. A
dynamic pole-placement controller, on the other hand, is able to place all poles with output
feedback. It is more suitable for the purpose of this study. The controller has a discrete-time
transfer matrix in the form of left MFD

GðzÞ ¼ Q�1
l ðzÞRlðzÞ; ð10Þ

where QlðsÞ ¼ Q0 þ Q1z
�1 þ?þ Qk�1z

�k�1 and RlðsÞ ¼ R0 þ R1z
�1 þ?þ Rkþr�1z

�k�rþ1 are
ka � ka and ka � ks polynomial matrices, respectively; the order of the controller is related to k;
which may be the smallest positive integer such that

kXn
ka

ks

� r: ð11Þ

Using Eq. (10) and the right MFD of TðzÞ; one obtains I þ TðzÞGðzÞ ¼ I þ N rðzÞ
D�1

r ðzÞQ�1
l ðzÞRlðzÞ: It is not difficult to verify equality

I ¼ fI þ N rðzÞD�1
r ðzÞQ�1

l ðzÞRlðzÞgfI � N rðzÞ½QlðzÞDrðzÞ þ RlðzÞN rðzÞ	�1RlðzÞg ð12Þ

by some routine calculations. It turns out that the discrete-time version of Eq. (6) is equivalent to

v ¼ ½I þ TðzÞGðzÞ	�1g ¼ fI � N rðzÞ½QlðzÞDrðzÞ þ RlðzÞN rðzÞ	�1RlðzÞgg; ð13Þ

which involves the inverse of QlðzÞDrðzÞ þ RlðzÞN rðzÞ with a dimension ka � ka: Since most active
vibration controllers use fewer actuators than feedback sensors (kaoks), the use of Eq. (13) helps
to reduce the complexity of controller design. If ka > ks instead, then one should use the left MFD
of TðzÞ and work on an equivalent ks � ks matrix. Starting from this step, the focus will be the
roots of det½QlðzÞDrðzÞ þ RlðzÞN rðzÞ	 ¼ 0 since these are closed-loop eigenvalues of the vibration
field.

3.2. Solution of controller parameters

The closed-loop poles can be placed by means of a ka � ka prototype polynomial matrix
PðzÞ ¼ P0 þ P1z

�1 þ?þ Pnþk�1z
�n�kþ1 þ Pnþkz�n�k with degree n þ k: There are many ways to

prescribe matrices Pi 0pipðn þ kÞ such that roots of det½PðzÞ	 ¼ 0 are in given locations in the
complex plane. One possible way is to construct PðzÞ ¼

Q
ðIa þ Kiz

�1Þ with ka � ka matrices Ia

and Ki: Here Ia is an identity and Ki is freely selected by a control engineer to represent ka given
poles. The most straightforward way is to let Ki be a diagonal matrix whose diagonal elements are
ka real poles. It is also possible to construct PðzÞ via matrices like ðIa þ Niz

�1 þ Kiz
�2Þ that
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represents given complex poles with real matrices Ni and Ki: The objective of the controller is to
match QlðzÞDrðzÞ þ RlðzÞN rðzÞ ¼ PTðzÞ; whose transpose is a Bezout equation

PðzÞ ¼ DTr ðzÞQ
T
l ðzÞ þ NT

r ðzÞR
T
l ðzÞ: ð14Þ

The Bezout equation is a mathematical tool frequently used in controller design [12,13]. With
QlðzÞ and RlðzÞ satisfying Eqs. (14) and (13) becomes

v ¼ ½I þ TðzÞGðzÞ	�1g ¼ ½I � NrðzÞP�TðzÞRlðzÞ	g: ð15Þ

As a result, closed-loop eigenvalues of the vibration field are placed by the controller to be roots
of det½PðzÞ	 ¼ 0; due to the equivalence of Eqs. (6) and (7) and the equivalence of Eqs. (6), (13)
and (15).
In summary, the objective of pole-placement is achievable by (a) a freely selectable prototype

PðzÞ and (b) a controller whose left MFD numerator RlðzÞ and denominators QlðzÞ satisfy Eq. (14)
that has an alternative expression

P0

P1

^

Pnþk�1

Pnþk

2
6666664

3
7777775 ¼

DT0 ? Oa

^ & Oa

DT
n ^ DT0

Oa & ^

Oa ? DTn

2
66666664
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

k�ka

NT
0 ? Oas

^ & Oas

NT
n�r ^ NT

0

Oas & ^

Oas ? NT
n�r

3
77777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðkþrÞ�ks

QT
0

^

QT
k�1

RT0
^

RTnþr�1

2
6666666664

3
7777777775
: ð16Þ

The ½ðn þ kÞka	 � ½kka þ ðk þ rÞks	 matrix in Eq. (16) is known as the generalized Sylvester matrix
(GSM) [13] where Oa is a ka � ka zero and Oas is a ka � ks zero matrix. The rank of the GSMmust
be ðn þ kÞka in order for Eq. (16) to be solvable. This is not a problem if v is controllable by u [13].
Since TðzÞ is identified from data sequences u and v, the uncontrollable modes cannot be excited
by u and the unobservable modes cannot be measured by v. If u satisfies the condition of persistent
excitation, T(z) will converge to a controllable transfer matrix by one of the identification
algorithms described in Ref. [12].
Matrix N0 in Eq. (16) should be zero if the feed-through matrix of Eq. (1) is zero or if the TFM

involves a propagation delay. Similar treatment applies to the cases when the delay is lon � r
sample intervals. That means the substitution of a zero N i for 0pipl in Eq. (16) without affecting
the solvability of QlðzÞ and RlðzÞ: This design procedure is most suitable for ka ¼ 1 such that QlðzÞ
reduces to a scalar polynomial. For ka > 1; an alternative solution is to design ka � 1 static
controllers to place partial closed-loop poles. Each of these controllers can be designed properly
so that it places closed-loop poles that are not controllable to the remaining actuators [14]. The
last controller is a dynamic one to place the remaining poles.
In practice, a continuous-time TFM may be identified and converted to a right MFD TðsÞ ¼

N rðsÞD�1
r ðsÞ; where DrðsÞ ¼ D0s

n þ D1s
n�1 þ?þ Dn and N rðsÞ ¼ N1s

n�r þ?þ Nn�r are
expressed in the Laplace transform domain. Other polynomials in Eq. (16), such as PðsÞ; QlðsÞ
and RlðsÞ; should also be expressed in the Laplace transform, as shown in the simulation.
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3.3. Stability margin and robustness

In reality, DrðzÞ and N rðzÞ are not available and their estimates are substituted instead. As a
result, Eq. (14) becomes PðzÞ ¼ #DTr ðzÞQ

T
l ðzÞ þ #NTr ðzÞR

T
l ðzÞ for the solution of controller matrices

QlðzÞ and RlðzÞ from an identified TFM. The modified Bezout equation is equivalent to

PðzÞ þ DDTr QT
l ðzÞ þ DNT

r RTl ðzÞ ¼ DTr ðzÞQ
T
l ðzÞ þ NT

r ðzÞR
T
l ðzÞ; ð17Þ

upon substitution of #Dr ¼ Dr � DDr and #Nr ¼ N r � DN r: As a result, Eq. (13) becomes

v ¼ ½I þ TðzÞGðzÞ	�1g ¼ fI � N rðzÞ½PðzÞ þ DDTr QT
l ðzÞ þ DNT

r RTl ðzÞ	
�1RlðzÞgg; ð18Þ

when #DrðzÞ and #NrðzÞ are substituted to obtain the controller matrices QlðzÞ and RlðzÞ: The
identification errors cause the closed-loop eigenvalues to be roots of

det½PðzÞ þ DDTr QT
l ðzÞ þ DNT

r RTl ðzÞ	 ¼ 0; ð19Þ

or, equivalently, roots of

detfI þ ½DDTr QT
l ðzÞ þ DNT

r RTl ðzÞ	P
�1ðzÞgdet½PðzÞ	 ¼ 0: ð20Þ

The closed-loop system is stable if ||½DDTr QT
l ðzÞ þ DNT

r RTl ðzÞ	P
�1ðzÞ||No1 by applying the small

gain theory to the above expression.
As explained in Section 2.3, identification errors of #DrðzÞ and #NrðzÞ are reasonably small

||DDrðzÞ||Npddr and ||DN rðzÞ||Npdnr if one of the algorithms analyzed in Ref. [12] is used to
identify TðzÞ in a persistently excited vibration system. Therefore, the stability margin is
analytically related to the identification error bounds in an HN constraint

ddr QT
l ðzÞP

�1ðzÞ N þ dnrj jj jRTl ðzÞP
�1ðzÞ

�� ���� ��
N
o1: ð21Þ

Since the objective of the proposed controller is active damping of the vibration field, it is
desirable to place the closed-loop eigenvalues of the vibration field in a disk with radius go1: In
order to achieve the objective, PðzÞ is no longer freely prescribed by a control engineer. Instead, it
must satisfy (C1) roots of det½PðzÞ	 ¼ 0 are inside a disk with radius go1; and (C2)
ddr||Q

T
l ðzÞP

�1ðzÞ||N þ dnr||R
T
l ðzÞP

�1ðzÞ||Nog:
These conditions fit well into the framework of the HN control theory. The problem is solvable

by the available numerical tools such as the Robust control toolbox or the LMI control toolbox of
Matlab. This is an advantage of the TFM approach. For controllers based on the modal or
physical state-space models, it is an open problem to find analytical links between stability margin
and errors in the eigenfunctions or errors in the mass/stiffness coefficients of finite elements.

4. Numerical and experimental verification

A numerical example is presented here to demonstrate how active damping is possible by a
controller based on the TFM. The vibration structure is a 1-D cantilever beam satisfying the
Bernoulli–Euler equation.
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4.1. Simulation conditions

With a unit length L ¼ 1; the ith eigenvalue of the beam is denoted by li as the ith root of
cosðliÞ coshðliÞ þ 1 ¼ 0: The ith resonant frequency may be calculated by oi ¼ ðliÞ

2
ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
where

r is the mass density; E is Young’s modulus of elasticity and I the moment of inertia of the cross-
sectional area with respect to the neutral axis. Theoretically the proposed controller is able to
damp as many modes as the actuator and feedback sensor can excite and observe. Practically,
active control devices are applied to the low frequency ranges since high order modes are absorbed
more effectively by inexpensive passive methods. For this reason, the model only includes m ¼ 5
modes with resonant frequencies o1 ¼ 0:70 rad=s; o2 ¼ 4:41 rad=s; o3 ¼ 12:34 rad=s; o4 ¼
24:18 rad=s and o5 ¼ 39:97 rad=s by assuming

ffiffiffiffiffiffiffiffiffiffiffi
EI=r

p
¼ 0:2: The eigenfunctions are analytically

available as [15]

jiðxÞ ¼ ½coshðlixÞ � cosðlixÞ	 � mi½sinhðlixÞ � sinðlixÞ	;

where

mi ¼
cosðliÞ þ coshðliÞ
sinðliÞ þ sinhðliÞ

:

If fitted into Eq. (1a), these parameters make K diagonal, M identity and detðMs2 þ KÞ ¼Q5
k¼1ðs

2 þ o2kÞ: Elements of B and C are eigenfunctions sampled at the actuator and sensor
locations, respectively.
It is assumed that ka ¼ 1 actuator and ks ¼ 3 sensors are mounded on the beam at xa ¼ 0:58;

xs ¼ ½0:38; 0:58; 0:88	T as shown in Fig. 1 by an arrow and three thick dots. The actuation force is
assumed to be a point force. A (point force) disturbance is assumed to act on xd ¼ 0:68 to inject a
white noise. In order to examine the damping effect, four monitor sensors are placed at xm ¼
½0:28; 0:48; 0:78; 0:98	T as shown in Fig. 1 by circles. These sensors are independent of the control
loop because their signals are not accessible by the controller.
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Fig. 1. Actuator, sensor and disturbance locations on a cantilever beam.
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4.2. Case 1: damping five modes

For the numerical example, the TFM is a 3� 1 polynomial matrix TðsÞ ¼ NTðsÞd�1ðsÞ where
dðsÞ is a scalar polynomial and NðsÞ is a 1� 3 polynomial matrix with degrees n ¼ 10 and
n � r ¼ 8; respectively, when ideal actuator/sensors are assumed. For m ¼ 5 > ks ¼ 3 > ka ¼ 1;
the inverse matrices in Eqs. (6), (7) and (13) are 3� 3 (ks � ks), 5� 5 (m � m) and 1� 1 (ka � ka),
respectively. Since these models are equivalent, the easiest way to assign closed-loop poles is to
work with Eq. (13). In case ka>ks, one should work with Eq. (6) by using the left MFD of TðsÞ as
explained in the previous section. In any case, m is larger than either ks or ka when actuator/sensor
dynamics are included.
The proposed controller has a transfer matrix GðsÞ ¼ q�1ðsÞRTðsÞ where qðsÞ is a scalar

polynomial and RðsÞ is a 3� 1 polynomial matrix. The order of the controller is k ¼ 2 as
determined by Eq. (11) for this example. Coefficients of qðsÞ and RðsÞ are solved by Eq. (16). A
prototype polynomial pðsÞ ¼ ðs þ 12Þ

Q5
k¼1ðs

2 þ 0:16oks þ o2kÞ is used to prescribe closed-loop
poles that are also closed-loop eigenvalues of the beam. The vibration spectra are plotted in
Figs. 2–5 as gray solid lines against the uncontrolled vibration spectra in back dash–dot lines.
These are signals independent and not accessible to the controller. The damping effects are
therefore to the entire vibration field.
In this test, attempts have been made to place poles with higher damping ratios. The controller

is able to place the corresponding poles. The resonant peaks are damped at the expense of
enhancing vibration spectra in other frequency ranges. Spectra plotted in Figs. 2–5 by gray lines
form a set of trade-off results between damping ratio and controller gains. One of the reasons
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Fig. 2. Vibration spectra measured at xm ¼ 0:98; with the dash-dot line for uncontrolled case; the gray solid line for
case 1 and the black solid line for case 2.
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Fig. 3. Vibration spectra measured at xm ¼ 0:78; with the dash-dot line for uncontrolled case; the gray solid line for
case 1 and the black solid line for case 2.
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Fig. 4. Vibration spectra measured at xm ¼ 0:48; with the dash-dot line for uncontrolled case; the gray solid line for
case 1 and the black solid line for case 2.
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might be an excessive goal for a single actuator to damp five modes simultaneously. This prompts
a second test as explained in the next subsection.

4.3. Case 2: damping three modes

In this case, the controller is designed to only damp the first three modes. A first order actuator
filter FaðsÞ ¼ ðs þ 15Þ�1 is included in the TFM and tested here. This is equivalent to adding
(s þ 15) to the denominator of TðsÞ: In general, one may simulate more complicated actuator/
sensor filters by adding the filter numerators and denominators to the numerator and
denominator of TFM, respectively. In reality, however, the actuator/sensor dynamics are
automatically included in the TFM during the identification process for TðsÞ:
Obviously, the effect of FaðsÞ is not the removal of the fourth and fifth modes from the model as

assumed by simple mode truncation. Since the resonant frequencies of these modes are o4 ¼
24:18 rad=s and o5 ¼ 39:97 rad=s; FaðsÞ introduces distortions to all modes. Inclusion of actuator/
sensor filters is analytically more accurate to mode truncation, and not too complicated as
demonstrated by this example.
The objective of damping the first three modes is prescribed to the controller via a new

prototype polynomial pðsÞ ¼ ðs þ 12Þ
Q3

k¼1ðs
2 þ 0:27oks þ o2kÞ

Q5
k¼4ðs

2 þ o2kÞ: One can see that
the damping ratio for the first three modes has been increased, whereas damping ratio for the
fourth and fifth modes remains uncontrolled. Coefficients of pðsÞ are then substituted into Eq. (16)
together with coefficients of dðsÞ and NðsÞ; so that the controller coefficients can be solved by a
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Fig. 5. Vibration spectra measured at xm ¼ 0:28; with the dash-dot line for uncontrolled case; the gray solid line for
case 1 and the black solid line for case 2.
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routine inversion. Vibration spectra for case 2 are plotted in Figs. 2–5 as black solid lines. Since
the actuator is required to damp fewer modes, it is able to introduce more damping without
requiring an excessive high-gain.

4.4. Experimental verification

The proposed controller is applied to damp an acoustical field in a 15� 12� 200 cm3 duct. The
actuator is a speaker placed in the middle of the duct and two sensors are placed 20 cm away in
each side of the speaker. Frequency response characteristics of the sensor and anti-alias filters are
available as plots, but not as transfer functions. As a result, the transfer matrix has to be identified
to include actuator/sensor dynamics. It is not necessary to separate the actuator/sensor dynamics
from the acoustical path in the identification process.
The anti-alias filter has a cut-off frequency at 900Hz as shown in Fig. 6. Theoretically, a

truncated model for the system has an order of m ¼ 24 since 12 resonant modes are inside the
range of 0–900Hz. Practically, however, the order of the model is 60 to include dynamic effects
outside the range of 0–900Hz. This is an important feature of the proposed method discussed in
Section 2.1. The controller parameters are computed using the linear matrix inequality (LMI)
toolbox of Matlab with an HN constraint given by Eq. (21). The performance of the controller is
plotted in Fig. 6 where the resonant peaks are well damped by the proposed controller.
Since an active controller can only damp a finite number of resonant peaks, there are always

resonant peaks not damped by the controller. The proposed method has an advantage, because its
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Fig. 6. Noise power spectrum densities, gray curve for uncontrolled noise; solid curve for actively damped noise.
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controller is designed by taking the actuator/sensor dynamics into analytical account. The
controller damps resonant peaks inside the pass-band of actuator/sensor dynamics very well
without introducing any negative effects to other resonant peaks outside the pass-band of the
actuator/sensor dynamics. This is verified in the experimental result of Fig. 6.

5. Conclusion

A robust controller is proposed for active damping of vibration fields. It is suitable for
applications where model parameters, such as eigenfunctions or mass/stiffness coefficients of finite
elements, are not analytically available or difficult to measure accurately. In these cases, one may
apply an identification algorithm described in Ref. [12] to obtain the TFM model with
identification errors bounded by small norms. The closed-loop stability margin of the proposed
controller is analytically available by Eq. (21). The closed-loop eigenvalues of the vibration field
can be placed inside a disk with radius go1; in the presence of bounded identification errors. This
is a feature not analytically available for other vibration controllers based on the modal or
physical state-space models.
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